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A solution is presented of the dynamical axisymmetric problem of elasticity 
theory for a cylinder of arbitrary length with given displacements on its curved 
and planar surfaces. The initial non-self-adjoint equations are converted into 
equivalent first order equations for an extended eigenvector by introducing cer- 
tain auxiliary functions. Arbitrary displacements given on the flat endface of 
the cylinder are expanded in series of eigensolutions of the problem by using 

these eigenvectors. Final formulas are obtained for the expansion coefficients. 

As a particular case, the solution ofthe statics problem of a cylinder [l] follows 
for 0 + 0 . An analogous problem has been examined in [Z] where it was red- 
uced to solving an infinite system of equations. The numerical method for sol- 

ving problems of such a class has been elucidated in [3]. 

1. Let us proceed from the differential equations in displacements 

ui2 [% + +$) + &a$ + (1.1) 

(U%’ - 11i2) 
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Let the boundary conditions be 

u (r, 2, t) IrEa = ‘pl (2) eiwt 
w (r, z, t) lrza = ‘p2 (z) @of 

(1.2) 

u (r, z, t) Izzo = g,(r) eimL, u (r, z, t) Id = fl (r) eimf (1.3) 

w (r, z, i) jzzO = g,(r) eimf, w (r, z, t) Id = f2 (r) eiof 

Here h, lr are Iam& constants, p is the material density, U, w are the longitudinal 
and radial displacements, respectively, I is the length, a is the radius of the cylinder, 
and o is the frequency of the forcing term. It is assumed that the frequency of the for- 

cing term does not coincide with any natural frequency of the cyclinder, and the follow- 
ing relationships 

‘pi (z) I:==0 = g,(r) Ir=a, ~p~(z)J~=~ = g2(r) lr=a 

(pl(z)Iz=~ = fl(r)Ir=a7 ‘pz (z) 14 = fz (r) Ir=a 

are satisfied under the conditions (1.2), (1.3). Let us seek the displacements u and w 

as the sum of solutions of (1.1) for an infinite cylinder with the known displacements 

(1.2) on the side surface (see Sect. 2) and for a semi-infinite cylinder with zero displa- 
cements on the side surface but the known displacements (1.3) on its flat endface (see 

Sect. 3). Superposition of the solutions permits considering the general solution for an 
elastic cylinder of arbitrary length with given displacements of the form (1.2) and (1.3) 
on its side surfaces. Having determined ‘the displacements, the strain can be found by 

means of known formulas, and the stress on the basis of the elastic strain law. Their 
expressions are omitted in the text. 

2. We take the solution of (1.1) for an infinite cylinder with the boundary conditions 

(1.2) as 
u1 (r, z, t) = u1 (r) sin (pnz) eim’ 

w1 (r, z, t) = w1 (r) cos (pnz) ei”‘, fin = m/Z 

(2.1) 

Substituting (2.1) into (1. l), we obtain a system of ordinary differential equations for 
the functions u1 (r) and w, (r) 

t’s 
t 

1 
1 zLln + -+ 

) 
- P,,27J22ul - Pn (vzP - VI") Wl' + +1 + i 

1 
(2.2) 

w2l.Q = 0 

v2 2 La: +fwp $) - p,2v12w1 + Pn(v22- v,2)zLl'+02wl = 0 
\ 

Hence, we write the solution of the system (2.2) for each harmonic (n = 1, 2, 3.. .) 
as follows : 

uln (r) = &PJo (rlnr) + B, a,!G’? Il CL& hr) - ran& tfznr)l 

rb = Pn2 - -$, & = pn2 - -$ ) 
kc% 

where A,,, B, are continuous in CO, and I, (z), I, (x) are modified Bessel functions. 
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Furthermore, assuming lo < nz~~, we determine the constants A, and B, from the 
boundary conditions (1.2). 

The solution of (1.1) corresponding to p, = 0, can be obtained by the direct solution 
of (2.2), where the constants of integration are determined analogously to A, and B,. 

The sum of the solutions obtained yields the desired solution about the displacements of 
an infinite cylinder with the boundary conditions (1.2). 

let us note that the solution of (1.1) is conveniently taken in the form (2.1) under the 
condition that (pi (z) is an odd and ‘ps (z) an even function. In order to be able to ex- 
pand any boundary values of the displacements, it is necessary to add equivalent rela- 
tionships obtained for mutual commutation of the sines and cosines to (2.1). 

3, Let us consider a semi-infinite cylinder on whose curved surfaces the displace- 
ments equal zero, while the first two conditions (1.3) are given on the flat endface. 

We seek the solution of the initial system of equations as 

us (r, 2, t) = us (r) e-ar/2 eiot (3.1) 

ws (r, z, t) = w2 (r) e-aZ/a eiWt 

Substituting (3.1) into (1.1) and solving the system analogous to (2.2) for the functions 

u2 (r) and w2 (r), we have 

a,2 = $ + -g ( a,2 z fg + -$ 

The parameter a is an eigenvalue and is determined from the homogeneous boundary 
conditions on the curved surface, which can be written as follows: u2 (a, z, t) z 0, 
w2 (a, z, t) ES 0 or taking account of (3.1) and (3.2) 

(3.‘3) 

The characteristic equation to determine the eigenvalues CL hence follows 

~Io(6,u)J,(62~)--6,6,J,(6,~)J1(6,~) = 0 (for o#O) (3.4) 

aJo (a) - ~J~(~)J,(~)+~J,Z(~)=O (for o=o) (3.5) 

Equation (3.5) agrees with the characteristic equation in [l], which was obtained in the 
statics problem for an elastic cylinder. The transcendental equation (3.4) containing 
rhe parameter a in the arguments of the Bessel functions as well as outside has an infi- 

nite denumerable set of roots a, (n = 1,2,3,. . .). 
It should be noted that a = 0 is not a root of (3.4) for a cylinder whose parameters 

satisfy the inequality 2a ,( 2 . 
Investigations carried out show that in addition to 
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%2 - _ 
-+J,,f~~_._d$. (first approximation) 

a3,4 = * 5 i 

all the roots of the transcendental equation (3.4) are complex-conjugates grouped in the 
quadrant 

a = * c1 + d,i - 

Let US note that the eigenvalue cx = & (oa/v,) i corresponds to the trivial solution. 
Only the roots with positive real. parts are of interest since they assure damping with in- 

creasing z. For each such a,, we have from the second equation in (3.3) 

(3.6) 

and the solutions of (3.2) become 

h&(r) = 

u,v12 

UC02 (1 - k) 
(3.7) 

w,,(r) = 

UnV12 

ao2(i -IC) 

Summing over all values of an, we represent the solution of (3.1) as infinite series con- 
taining the unknown constants d, 

u2(r, z, t) = i dnuzn (r) exp (- T) exp (W (3.8) 
?I=1 

w2(r,z,t)= g d 
n=1 

nw2n(r)exp(- J&)exp (iot) 

Substituting (3.8) in the first two conditions (1.3). we obtain 

m 

2 dnuzn Cr.) = gl (r), i dnwzn (r) = g2 (r) (3.9) 
n=1 n=1 

TO determine the unknown constants d,, let us write the initial system (1.1) taking ac- 
count of (3.1) in the matrix form 

[7-E’ (r-)1’ = aL&’ (r) + a2L2E (r) + aL3t (r) + L4E fr) (3.10) 
Here 

0 
1 r 

L, = ( j/ 7-1 7 

(1 -k) $- 0 ‘I 

1 l. --- 
k a2 

0 I 
L, = L, = 

0 
kr ’ 

-- 
U2 
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The boundary conditions for % (r) have the form 5 (a) = 0. By introducing the auxili- 

ary vector [l] 

which contains the two functions p (F) and 4 (F) related to the functions us (F) and 

wz(r); we eliminate the second derivative from (3.10) and we therefore obtain an equa- 
tion for the extended vector 

Fy’ = Ay + aBy 

with the following boundary conditions 

(3.11) 

p. = $lP?(J)) 0 II 
0 

0 $2 (r. II 
$4 (r, 0) 

a), ’ 
R,= l-k ! ak r% (r, 0) 0 

! 

so= 0 II - $1 (r, 0) 0 
- $2 (r, a) II 

0 
k (1 - k) 

a r - k2% (r, o) 

‘,= 1-k 

ak2’ 0 

The functions ?#I (F, o), +& (F, 0) and $a (r, 0) are solutions of the ordinary differ- 
ential equations 

~++$rz++o, $I(& Wk! = 0 

The function Q4 (F, w) is determined by the following formula: 

$a(‘-, 0) = L$F[$,(F,o)+~] - 2(1aAk) F 

The auxiliary vector q (F) depends on g (F), a, w 

rl (9 = -$ Q1’E’ (r) - 1 QilPog (F) - QT’P1g (r) 

The boundary value problem (3.11) is self-adjoint [4]. The matrix of the nondegenerate 
transformation z = Ty has the following form: 
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II 0 x (r,(J)) + 0 

T(F)+,=+ -xy) O 0 -1 

_- k 0 0 0 

0 1 0 0 

x (r, 0) = 93 ( F, co) - (I - k) r/ak 

It is easy to see that the following orthogonality condition 

(%,t - ‘A,) l YmTQYndF = [YmTT~Tynloa = 0 (3.12) 
0 

is valid for the vectors ym and yn corresponding to the two distinct eigenvalues a, and 
arrof the parameter a . Here y,,,T is the transpose of the vector Ym (r) corresponding 

to the eigenvalue a, and Q is the nondegenerate matrix 

0 (1 - k)$3 

BTT = TTB = Q = 
-++f & -$ 

0 1 
rk2 

0 

k 0 0 0 -- 
r 

Using the orthogonality condition (3.12) we can determine the coefficients of the ex- 
pansion of the arbitrary vector yO (F) in a series in the vectors y,, (F) in the segment 

10; al. Let 
90 (F) = 5 &J,(F) 

?a=1 

Then there follows from (3.12) (I 

d, = + 
s YnT Qycdr 

n 0 

(3.13) 

On the basis of (3.2) and (3.7). F, 
a 

F, = ynTQyndr = 
s 
0 

is here determined by the following formula : 

(3.14) 

Therefore, the constants d, in (3.9) can be determined by the formulas (3.13) and (3.14) 

by interoducing the auxiliary vector q (F) . 

4. As an illustration, let us consider the deformation of a semi-infinite cylinder with 
zero displacements on the curved surface, while on the endface z = 0 they are 

U2 (F, 0, t) = F (1 - F/U) eiot (4.1) 

Wp (F, 0, t) = 0 

From (4.1) and (3.9) we obtain 



688 G.A.Brusllovskala and L.V.Ershov 

5 d,Uz,(F) = r I- $ 
n=1 ( 1 (4.2) 

Assuming ?I,, (F) E 0, we have 
a 

Substituting the expression for zzan (F) from (3.6) into (4.3) and integrating, we obtain 

a 

s ’ ynTQyodr = k (1 “;;‘ks,l -$-i "_j 
12- * 02 Jo (bnr) dr - 

212 2n 
0 

a (4.4) 

Furthermore, using (3.14), we determine F, 

F, = 
in 

a (1 - k)2 1 (4.5) 

where jik = Ji (6k,,a) is taken in (4.4) and (4.5). 
It can be seen that for wk = 0 we have 

+I (F, 0) = 94 (r, 0) = x (F, 0) = 0, 92 (F, 0) = 1, $3 (r, 0) = 
F (1 - k)/Uk 

and we obtain the solution ofthestatics problem for a cylinder by passing to the limit 

o --z 0 in (3.2) or in (4.4) and (4.5). 

REFERENCES 

1. Fliigge, W. and Kelkar, V. S., The problem of an elastic circular cylinder. 
Int. J. of Solids and Structures. Pergamon Press, Vol.4, %4, 1968. 

2. Golovin, 0. A., On the forced longitudinal vibrations of a cylinder. Izv. Akad. 
Nauk ArmSSR, Mekhanika, Vol. 23, No3, 1970. 

3. Sabodash, P. F. and Cherednichenko, R. A., Use ofthe method of 

spatial characteristics LO solve axisymmetric problems of elastic wave propaga- 
tion. Zh. Prikl. Mekh. i Tekh.Fiz., NQ4, 1971. 

4. Bliss, G. A., A boundary value problem for a system of ordinary linear differ- 
ential equations of the first order. Trans. Amer. Math. Sot., Vol. 28, Np4, 1926. 

5. Jahnke, E., Emde, F. and Loesch, F., Special Functions (Russian trans- 

lation) “Nauka”, Moscow, 1964. 

Translated by M.D. F. 


